Statistical physics and thermodynamics describe the behaviour of systems on the macroscopic scale. Their methods are applicable to a wide range of phenomena: from heat engines to chemical reactions, from the interior of stars to the melting of ice. Indeed, the laws of thermodynamics are among the most universal ones of all laws of physics. Yet this subject can prove difficult to grasp. Many view thermodynamics as merely a collection of ad hoc recipes, or are confused by unfamiliar novel concepts, such as the entropy, which have little in common with the theories to which students have got accustomed in other areas of physics.

This text provides a concise yet thorough introduction to the key concepts which underlie statistical physics and thermodynamics. It begins with a review of classical probability theory and quantum theory, as well as a careful discussion of the notions of information and entropy, prior to embarking on the development of statistical physics proper. The crucial steps leading from the microscopic to the macroscopic domain are rendered transparent. In particular, the laws of thermodynamics are shown to emerge as natural consequences of the statistical framework. While the emphasis is on clarifying the basic concepts, the text also contains many applications and classroom-tested exercises, covering all major topics of a standard course on statistical physics and thermodynamics.

The text is suited both for a one-semester course at the advanced undergraduate or beginning graduate level and as a self-contained tutorial guide for students in physics, chemistry, and engineering.

Diese Webseite verwendet Cookies.
Cookies werden zur Benutzerführung und Webanalyse verwendet und helfen dabei, diese Webseite besser zu machen. Mehr Infos hier: Datenschutzerklärung
Ok